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A Monte Carlo uncertainty analysis of ozone trend 
predictions in a two-dimensional model 

D. B. Considine, x'2 R. S. Stolarski, 
and E. L. Fleming, 2'3 

2 S. M. Hollandsworth, 2'3 C. H. Jackman, 2 

Abstract. We use Monte Carlo analysis to estimate the uncertainty in predictions 
of total Oa trends between 1979 and 1995 made by the Goddard Space Flight 
Center (GSFC) two-dimensional (2-D) model of stratospheric photochemistry 
and dynamics. The uncertainty is caused by gas phase chemical reaction rates, 
photolysis coefficients, and heterogeneous reaction parameters which are model 
inputs. The uncertainty represents a lower bound to the total model uncertainty 
assuming the input parameter uncertainties are characterized correctly. Each of 
the Monte Carlo runs was initialized in 1970 and integrated for 26 model years 
through the end of 1995. This was repeated 419 times using input parameter 
sets generated by Latin hypercube sampling. The standard deviation (a) of the 
Monte Carlo ensemble of total Oa trend predictions is used to quantify the model 
uncertainty. The 34% difference between the model trend in globally and annually 
averaged total Oa using nominal inputs and atmospheric trends calculated from 
Nimbus 7 and Meteor 3 total ozone mapping spectrometer (TOMS) version 7 data 
is less than the 46% calculated la model uncertainty, so there is no significant 
difference between the modeled and observed trends. In the northern hemisphere 
midlatitude spring the modeled and observed total 03 trends differ by more than la 
but less than 2a, which we refer to as marginal significance. We perform a multiple 
linear regression analysis of the runs which suggests that only a few of the model 
reactions contribute significantly to the variance in the model predictions. The lack 
of significance in these comparisons suggests that they are of questionable use as 
guides for continuing model development. Large model/measurement differences 
which are many multiples of the input parameter uncertainty are seen in the 
meridional gradients of the trend and the peak-to-peak variations in the trends over 
an annual cycle. These discrepancies unambiguously indicate model formulation 
problems and provide a measure of model performance which can be used in 
attempts to improve such models. 

1. Introduction 

Two dimensional (2-D) models of stratospheric pho- 
tochemistry and dynamics are used to study the changes 
that have occurred in column Os levels over the past 2 
decades and the factors responsible for those changes. 
The models are valuable for these studies because they 
are simple enough to be run for many years, but still 
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describe the seasonal, meridional, and vertical structure 
of the atmosphere. 

Comparison of 2-D model predicted total Os changes 
with observations tests the adequacy of our understand- 
ing of the processes that have modified atmospheric Os 
concentrations recently. Model/observation discrepan- 
cies are often taken as an indication that the model is 

incorrect and some important process is missing from 
the model formulation and our understanding. For in- 
stance, Solomon et al. [1996] noted that the agreement 
between the total Oa time series calculated from to- 
ted ozone mapping spectrometer (TOMS) data and a 
2-D model was significantly improved by adding to the 
model a background sulfate aerosol layer which repro- 
duced observed variations of the aerosol layer over the 
TOMS observing period. Jackman et al. [1996] included 
a parameterization of solar ultraviolet flux variations 
in addition to a realistically varying background sul- 
fate aerosol and also found better agreement between 
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the model and observations. And recently, Solomon et 
al. [1998] found that including temperature fluctuations 
about the zonal mean made the modeled and observed 

total O3 time series agree better in the northern hemi- 
sphere midlatitudes during springtime. 

This "standard" method of utilizing 2-D models to 
interpret observations has proved fruitful but is limited 
because uncertainties in the values of model input pa- 
rameters such as chemical reaction rates result in uncer- 

tain model output. If this uncertainty is large compared 
to a model/measurement discrepancy, then no signifi- 
cance can be attributed to the difference, as it might 
easily be due to an input parameter error rather than a 
problem with the model formulation. 

The propagation of input parameter uncertainties 
through atmospheric photochemistry and dynamics 
models is time-consuming but straightforward. The 
most common method to date is the Monte Carlo tech- 

nique [$tolarski et al., 1978; $tolarski and Douglass, 
1986; Douglass and $tolarski, 1987; Thompson and 
Stewart, 1991; Gao et al., 1996; Stewart and Thomp- 
son, 1996; Chen et al., 1997; Fish and Burton, 1997]. 
There has not been a great deal of work in this area, 
perhaps because it is generally felt that many important 
processes such as those controlling atmospheric trans- 
port are so crudely parameterized that input parameter 
uncertainties are likely to be small in comparison. Al- 
though this may be true, the goal of this paper is to 
quantitatively assess the uncertainty in 2-D model pre- 
dictions of O3 trends and to use this information to 
interpret comparisons between the model predictions 
and TOMS observations of trends in total 03. If a 
model/measurement discrepancy is rendered insignifi- 
cant by known uncertainties in the input parameters, 
additional unquantified sources of uncertainty will not 
affect this result. 

In this paper we use a Monte Carlo technique to 
evaluate the uncertainty in the O3 trend predictions of 
the NASA Goddard Space Flight Center (GSFC) 2-D 
model. We consider the effects of uncertainties in chem- 

ical reaction rates, photolysis coefficients, and heteroge- 
neous reaction rates. The model includes a parameter- 
ization of the solar cycle variation and a realistic varia- 
tion of the sulfate aerosol surface area density between 
1979 and 1995. In section 2 we briefly describe the ver- 
sion of the G SFC 2-D model used in these studies. In 

section 3 we discuss the Monte Carlo method and de- 

tails of the runs analyzed in this paper. In section 4 
we present the results of the Monte Carlo uncertainty 
analysis. We summarize our results and draw some con- 
clusions in section 5. 

2. Model Description 

The Goddard Space Flight Center 2-D model has 
been described fairly completely in numerous previous 
publications [e.g., Jackman et al., 1996, and references 
therein]. We briefly summarize its features here. 

The model has a 10 ø latitudinal resolution, with 
the midpoints of the 18 'latitude bands located at 
-85ø,..., +85 ø. The vertical coordinate is log-pressure 
with a resolution of about 2 km. The model uses the 

residual circulation formulation described by Fleming et 
al. [1995]. Constituents are advected using the second- 
order moment scheme of Prather [1986]. Note that 
the Jackman et al. [1996] study uses a somewhat dif- 
ferent residual circulation formulation and a piecewise- 
parabolic advection scheme instead of second-order mo- 
ments. These differences do not affect the conclusions 

of this study. 
The model contains a fairly complete description of 

stratospheric chemical processes. It calculates the con- 
centrations of 62 species. Of these, 28 are transported, 
and the remainder are calculated using photochemical 
equilibrium assumptions. Family approximations are 
used for Ox, NOx, C10•, and Br• species. There are 
106 gas phase chemical reactions in the model chemical 
scheme. The reaction rates are calculated from values 

specified by DeMote et al. [1994]. 
Heterogeneous reactions occur on a background sul- 

fate aerosol layer. The sulfate aerosol surface area den- 
sity distribution used to calculate the reaction rates is 
based on satellite extinction measurements made be- 

tween 1979 and 1995 as described by Jackman et al. 
[1996]. The distribution represents the temporal varia- 
tion of the zonal mean atmospheric sulfate aerosol layer 
in response to the various volcanic eruptions which have 
occurred since 1979. Heterogeneous reactions on Type 
I (nitric acid trihydrate) and Type 2 (water ice) po- 
lar stratospheric clouds (PSCs) are also included. The 
PSC surface area densities are calculated following Con- 
sidine et al. [1994]. All of the heterogeneous reactions 
included in the model are included in the Monte Carlo 

input parameter set described in section 3. 
There are 45 photolytic decomposition reactions in- 

eluded in the model. The photolysis coefficients are 
specified from a photolytic source term look-up table 
generated with the Anderson radiation code described 
by Anderson and Lloyd [1990]. Cross sections are taken 
from DeMote et al. [1994]. The model also includes a 
parameterization of solar cycle variations in the solar 
UV flux, again as described by Jackman et al. [1996]. 

3. Monte Carlo Methodology 

In a Monte Carlo analysis of the uncertainty in a 
particular model output, the model is run many times 
using a different set of input parameter values in each 
run. Each set is a combination of possibly correct in- 
put parameter values which are chosen on the basis of 
the specified uncertainty in each of the input param- 
eters. Each input parameter value set results in dif- 
ferent model output. The ensemble of model output 
values produced by the Monte Carlo runs is then used 
to characterize the output uncertainty resulting from 
uncertainties in the input parameters. 
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3.1. Parameters 

Table 1 lists the 93 chemical reactions whose uncer- 

tainties are propagated through the model in this study. 
Since the model includes 106 gas phase reactions in all, 
13 reactions are not included as Monte Carlo parame- 
ters. These reactions are only important in the meso- 
sphere, so their neglect has no bearing on the study of 
uncertainty in total 03 predictions. 

To understand how values used in the Monte Carlo 

runs are chosen for a particular reaction, consider a hi- 
molecular reaction with the Arrhenius form, 

where k(T) is the reaction rate at temperature T, A is 
a constant, and E/R is the activation energy in kelvins. 
To make the discussion below easier to follow, note that 
this can be rewritten in terms of the reaction rate at 

298 K, k29s: 

(E(1 k(T) - k.•9sexp • 298 T ' (2) 
Both k•.9s and E/R are measured quantities and 

therefore are uncertain. In a Monte Carlo study, these 
uncertainties are represented with probability distribu- 
tions which are then sampled in some way to obtain the 
set of values used in the Monte Carlo runs. 

DeMote et al. [1994] provides an estimate of the un- 
certainty of k29s and E/R, denoted f29s, and AE/R, 
respectively. The publication also provides an equation 
for determining the uncertainty in the reaction at any 
temperature T, 

•_E(1 1) f (T) - f 29s exp -- T 2•8 ' (3) 
This expression cannot be used directly in a Monte 

Carlo study because it implies a different probability 
distribution characterizing the reaction uncertainty at 
each temperature. Sampling multiple probability dis- 
tributions to obtain rates for a single reaction would 
destroy the Arrhenius form of the reaction rate. 

In this paper we assume that the uncertainty in k29s 
is described by a lognormal probability distribution and 
the uncertainty in E/R is described by a normal dis- 
tribution. A lognormal distribution is chosen for k29s 
to exclude choosing negative values for this quantity, 
which would be physically unrealistic. No such con- 
straint exists for E/R, so we characterize its uncertainty 
using a normal distribution with mean Eø/R and stan- 
dard deviation AE/R taken from DeMote et al. [1994]. 

The upper uncertainty bound for k29s is specified in 
DeMote et al. [1994] by + k2%sf29s , where k2% s is the k29 s-- 
nominal value of the rate. Taking the logarithm of this 
relationship results in, 

ln(k•8 ) -ln(k2%8) + ln(f298). (4) 
Since the upper uncertainty bound of a quantity is 

typically specified as one standard deviation above its 
mean value, this form suggests that we can describe the 
uncertainty in the logarithm of k298 by a normal distri- 
bution with a mean of In(k2ø98) and standard deviation 
In(f298). With this choice the uncertainty in k298 is 
described by the lognormal distribution: 

where 

- In 2 (k29s / k2ø9s) ) P(k29s) -- C exp 
2 ln2 (f29s) 

, (5) 

1 

C = (2•r)•/2(k29 s ln(f29s))' (6) 
To choose a rate for a bimolecular reaction in a Monte 

Carlo run, a value for k29s is chosen by sampling equa- 
tion (5) and a value for E/R is chosen by sampling 
the normal distribution describing its uncertainty. The 
rate of the reaction for that Monte Carlo run is then 

constructed from equation (2). This method preserves 
the Arrhenius form of the bimolecular reaction rates, as 
desired. 

It should be noted that DeMote et al. [1994] do not 
provide a specific definition of the uncertainty bounds 
listed in the document. The publication instead states 
that the uncertainties are subjective and are not based 
on a rigorous statistical analysis of the available mea- 
surements for each rate. The interpretation of these 
limits we have adopted in this paper is therefore our 
own. While reasonable, it is not unique. For instance, 
Stewart and Thomson [1996] made the identification 
f2gs - 1+s/m, where s and m are the mean and 
standard deviation of the lognormal distribution char- 
acterizing the uncertainty in k29s. With this reason- 
able assumption, the standard deviation of ln(k29s) is 
not ln(f298) as we assume but {ln[1 + (f298 - 1)2]} (1/2). 
This function increases slightly faster than ln(f298) as 
f298 increases, but not significantly so. 

Termolecular reactions are treated similarly to the 
bimolecular case. DeMote et al. [1994] provide the 
functional form for a termolecular reaction in the low- 

pressure limit, 

, 
where [M] is the number density of air, and k0Søø[M] is 
the effective bimolecular rate of the reaction at 300 K 

in the low-pressure limit. DeMote et al. [1994] also pro- 
vide uncertainty estimates Ak0 søø and An for k0 søø and 
n, respectively. We generate a lognormal distribution 
from k0 søø and Ako søø from which to pick values for the 
Monte Carlo runs and a normal distribution from n and 

An. For simplicity, we have ignored the uncertainty of 
the termolecular reactions in the high pressure limit. 
Thus, the uncertainty distributions generated for the 
termolecular reactions underestimate the uncertainty in 
these reactions implied by the DeMote et al. [1994] val- 
ues. 
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Table 1. Gas Phase Reactions Varied in Monte Carlo Runs 

Pgrameter Description f•.os or Ako •øø AE/R or An 

R1 
R2 

R3 
R4 

R5 
R6 
R7 

R8 
R9 

R10 
Rll 
R12 
R13 
R14 
R15 
R16 
R17 
R18 
R19 
R20 
R21 
R22 
R23 
R24 
R25 
R26 
R27 
R28 
R29 
R30 
R31 
R32 
R33 
R34 
R35 
R36 
R37 

R38 
R39 
R40 
R41 
R42 
R43 

R44 
R45 
R46 

R47 

R48 
R49 
R50 
R51 
R52 

R53 
R54 

R55 
R56 
R57 
R58 
R59 
R60 
R61 

R62 

R63 
R64 

O+ O•. + M -• 03 + M 
O + Os -• 20•. 
H + O•. + M -• HO•. + M 
OH + Os -• HO•. + O•. 
HO•. + 03 • OH + 20•. 
C10 + HO•. • HOC1 
C1 + H•.O•. -• HC1 + HO•. 
O(•D) + M -• O(sP) + M 
NO + 03 • NO•. + 
NO•. + Os • NOs 
H + Os -• OH + 0•. 
OH + OH + M -• H•.O•. + M 
OH + C1ONO•. -• HOC1 + NO3 
CH4 -+- OH • CHs + H•.O 
CHsO•. + NO -• CHsO + NO•. 
OH + CHsC1 -• H•.O + CH•.C1 
CHsO + 0•. -• CH•.O + HO•. 
OH + NO•. + M -• HNOs + M 
HO•. + HO•. • H•.O•. + O•. 
N+O•. • NO+O 
CH•.O + 0 -• HCO + OH 
CHsO•. + HO•. -• CHsOOH + 0•. 
C1 + H•. -• HC1 + H 
C1 + Os -• C10 + O•. 
C10 + O • C1 + 
C1 + CH4 -• H C1 + CHs 
HC1 + OH -• C1 + H•.O 
C10 + NO -• C1 + NO•. 
H•.O•. + OH -• H•.O + HO•. 
H•. + OH -• H•.O + H 
N•.O• + M • NO•. + NOs + M 
C10 + NO•. + M -• C1ONO•. + M 
H•.O•. + O • HO•. + OH 
HO•. + NO•. + M --• HO•.NO•. + M 
C1ONO•. + O • C10 + NOs 
HNOs + OH • NOs + H•.O 
NO + HO•. • OH + NO•. 
H•.O + O(•D) -• 2OH 
OH + HO•. • H•.O + O•. 
OH+O • H+O•. 
HO•. + O • OH + O•. 
NO•. + O • NO + O•. 
NO•. + O + M --• NOs + M 
N•.O + O( • D) -• 2NO 
NO•. + NOs + M -• N•.O5 + M 
N+ NO -• N•. + O 
H2 + O(•D) • OH+H 
CH4 + O(•D) • CH3 + OH 
CHs + O•. + M -• CHsO•. + M 
CH•.O + OH -• H•.O + HCO 
HCO + 0•. -• CO + HO•. 
C1 + HO•. -• HC1 + 

CC14 + O( • D) -• 4C1 + products 
OH + HO•.N02 -• H•.O + 0•. + NO2 
CH4 -+- O( 1 D) • H•. + CH•.O 
OH + CHsOOH • H•.O + CHsO•. 
OH + OH • H•.O + O 
C10 + OH • C1 + HO•. 
HOC1 + OH • H•.O + C10 
C1 + CH•.O • HC1 + HCO 
HO•. + HO•. + M • H•.O•. + M 
CFC10 + O( • D) --• products 
CF•.O + O( • D) -• products 
C1 + HO•. -• OH + C10 

5E-35 0.5 
1.15 250 

5E-33 0.5 
1.3 300 
1.3 500 
1.4 250 

1.5 500 

1.2 100 
1.2 200 

1.15 150 
1.25 200 

3.0E-31 2.0 
1.5 20O 
1.1 150 
1.5 180 
1.2 250 
1.5 300 

3E-31 0.7 
1.3 200 

1.25 400 
1.25 250 
2.O 4OO 

1.25 200 
1.15 100 
1.3 70 
1.1 150 
1.3 100 

1.15 100 
1.2 100 
1.2 400 

1.3 500 
3E-32 1.0 

2.O 1000 
3E-32 0.4 

1.5 200 
1.3 100 
1.2 80 

1.2 100 
1.3 2OO 
1.2 100 
1.2 100 

1.1 120 
1.0E-32 1.0 

1.3 100 
5E-31 1.0 

1.3 100 

1.2 100 

1.2 100 

1.5E-31 1.0 
1.25 200 

1.3 140 
1.5 2O0 

1.2 100 
1.5 270 

1.2 100 
1.5 200 
1.4 240 

1.5 150 
3.0 500 

1.15 100 
1.3 400 

2.O 100 

2.O 100 
2.O 2OO 
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Table 1. (continued) 

Parameter Description f298 or Ako 3øø AE/R or An 

R65 
R66 
R67 
R68 
R69 

R70 

R71 
R72 

R73 

R74 

R75 
R76 
R77 
R78 
R79 
R80 
R81 
R82 
R83 

R84 

R85 

R86 
R87 
R88 
R89 
R90 
R91 
R92 

R93 

BrO + NO -r NO2 q- Br 
HO2NO2 q- M --r HO2 q- NO2 q- M 
NO + NO3 --} 2NO2 
OH + CH3CCla -r 3C1 + products 
NO + O + M -+ NO2 + M 

N20 q- O( 1 D) --r N2 q- 02 
CF2C12 + O(•D) -• C10 + C1 + fragment 
N + NO2 -• N20 + O 
CFC13 + O( x D) -r C10 + 2C1 + fragment 
02 + 02 (xD) -} 202 
03 + 02 (xD) -r 202 + O 
Br + 03 -r BrO + 02 
Br + HO2 -r HBr + 02 
BrO + C10 -r Br + C1OO 
BrO + BrO -r 2Br + 02 
OH + HBr -r H20 + Br 
BrO + NO2 + M -r BrONO2 + M 
CH3Br + OH -r Br + products 
CHC1F2 + OH -• C1 + 2f + products 
C2C13F3 + O( x D) -r 3C1 + products 
C2C12F4 + O( x D) -r 2C1 + 4f + products 
C2C1F5 + O(•D) -r C1 + 5f + products 
C10 + C10 + M -• C1202 + M 
BrO + C10 -r Br + OC10 
BrO + C10 -r BrC1 + 02 
BrO + O -r Br + 02 
BrO + HO2 -r HOBr + 02 
Br + CH20 -r HBr + CHO 
CH4 + O( • D) --r H + CH30 

1.15 130 
5.0 1000 
1.3 100 
1.1 150 

2.0E-32 0.3 

1.3 100 

1.3 100 
1.5 100. 
1.2 100 

1.2 100 

1.2 500 
1.2 200 
2.O 6OO 

1.25 200 
1.25 150 
1.2 250 

6E-32 0.8 
1.1 150 
1.1 150 

2.O 100 

2.O 100 

1.3 100 
4E-33 0.5 
1.25 200 
1.25 200 
1.5 150 
1.5 5OO 
1.3 200 

1.2 100 

Read 5E-35 as 5 x 10 -35. 

Table 2 lists the 45 photolytic reactions whose un- 
certainties are propagated through the model in this 
study. The uncertainty distributions for 27 of the reac- 
tions were generated from the cross-section uncertainty 
estimates listed by DeMote et al. [1994, Table 5]. For 
the remaining reactions, an uncertainty of f• = 1.2 was 
arbitrarily chosen. The cross-section uncertainties were 
applied at all wavelengths. The lognormal probability 
distribution characterizing the cross section uncertainty 
was generated similarly to the lognormal distribution 
characterizing k298 discussed above. We assumed that 
the uncertainty in the logarithm of the cross section was 
characterized by a mean value ln(aø(A)) where a ø is the 
nominal cross section value and • is the wavelength, 
and standard deviation ln(f•). We also assumed that 
the solar flux was uncertain by a factor fsf = 1.1, and 
varied its value accordingly in each Monte Carlo run. 

Table 3 lists the heterogeneous reaction parameters 
whose uncertainties are propagated through the model 
in this study. In addition to the surface reaction prob- 
abilities we also consider the size distributions of the 
Type 1 and Type 2 PSCs to be uncertain and the su- 
persaturation required before the PSCs form. The un- 
certainties listed in Table 3 were mostly taken from 
DeMote et al. [1994, Table 59]. However, DeMote, 
et al. 's table did not provide uncertainty estimates for 

several of the reaction parameters. For these cases we 
(:hose an uncertainty based on a reading of the DeMore 
et al. [1994] table notes, personal communication with 
laboratory experimentalists (D. Hanson, personal com- 
munication, 1996), or primary laboratory measurement 
sources. These cases are indicated in footnotes to Ta- 
ble 3. 

Note that the conclusions of this paper are valid only 
to the extent that the characterization of the input pa- 
rameter uncertainties described above is reasonable. If 

this is not the case, then the output uncertainty deter- 
mined from the Monte Carlo runs will not reflect the 

actual uncertainty in the model results. 

3.2. Latin I-Iypercube Sampling 

Consider the uncertainty propagation of a single in- 
put parameter. A set of N values for the parameter 
are chosen and the model is run N times, once for each 
value. The variance in the model output of interest 
for the N-run set characterizes its uncertainty due to 
the input parameter. To be valid, the set of N input 
parameter values used in the runs must correctly repre- 
sent the uncertainty of the input parameter. If a model 
run requires significant computer time, then N must be 
made as small as possible in order for the study to be 
practical. However, it must still be large enough for 
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Table 2. Photolytic Decomposition Rates Varied in Monte Carlo Runs 

Parameter Description Uncertainty 

j1 O•. -• O -•- O 1.20 

J2 Os -• O•. + O(XD) 1.25 
J3 Os -• O•. -•-O 1.10 
J4 H•.O -• H -•- OH 1.20 
J5 NOs --• NO•. + O 2.00 
J6 HNOs --• OH + NO•. 1.30 
J7 NO•. -• NO -•- O 1.20 
J8 H•.O•. -+ 2OH 1.30 
J9 N•.O5 -• NO•.-+-NOs 2.00 

J10 CH•.O -• HCO -+- H 1.20 
Jll CH•.O -• H•. -+-CO 1.20 
J12 CO•. -• CO + O 1.20 
J13 CHsOOH -• CHsO -+- OH 1.50 
J14 N•.O -• N•. -+-O 1.20 
J15 C1ONO•. -+ C1-+-NOs 1.30 
J16 NO -• N -+- O 1.20 
J17 NOs -• NO -+- O•. 1.30 
J18 HC1 -• H -+- C1 1.10 
J19 CC14 -• 4C1 -+- fragment 1.10 
J20 CHsC1 -• CHs + C1 1.10 
J21 CFCla -• 3C1 -+- fragment 1.10 
J22 CF•.CI•. -• 2C1 -+- fragment 1.10 
J23 HOC1 -• OH -+- C1 1.40 
J24 HO•.NO•. -• OH -+- NOs 2.00 
J25 H20 --• H2 + O( 1 D) 1.20 
J26 CHsCCls -• 3C1 + fragment 1.20 
J27 BrO -• Br + O 1.20 
J28 BrONO2 -• Br + NOs 1.40 
J29 CH3Br -• CH3 + Br 1.20 
J30 CP3Br -• Br + 3P + fragment 1.30 
J31 CP2C1Br -• Br + C1 + 2f + fragment 2.00 
J32 CHC1P2 -• C1 + 2f + fragment 1.20 
J33 C2ClsFs -• 3C1 + 3f + fragment 1.20 
J34 C•.Cb. F4 -• 2C1 + 4f •- fragment 1.20 
J35 C•.C1F5 -• C1 •- 5f •- fragment 1.20 
J36 CI•.O•. -• C1 •-C1OO 1.20 
J37 BrC1 -• Br •- C1 1.20 

J38 CO•. -• CO + O( x D) 1.20 
J39 HO•.NO•. -• HO•. + NO•. 2.00 
J40 CC1FO -• C1 •- f •- fragment 1.20 
J41 CF•.O -• 2f •- fragment 1.30 
J42 CH4 -• CHs •- H 1.20 
J43 CH4 -• CHq. •-H•. 1.20 
J44 CH4 -• CH + H + H•. 1.20 
J45 CHsO•. -• CHs + O•. 1.20 

the input parameter uncertainty to be well sampled. It 
is therefore important to find an efficient method for 
selecting the input parameter values. 

Consider two different techniques. The first is to ran- 
domly pick N input parameter values such that the 
probability of obtaining a particular value is equiva- 
lent to the probability that it is the true value of the 
parameter. The second method is to divide the input 
parameter range into N equal-probability segments and 
take one input parameter value from each segment. The 
first method is known as random sampling (RS) and 
the second, when generalized to multiple input parame- 
ters, is known as Latin hypercube sampling (LHS) [e.g., 
McKay et al., 1979]. It has been found that the number 

of model runs necessary to obtain a good characteriza- 
tion of the uncertainty in an output parameter can be 
significantly smaller when LHS is used to choose the in- 
put parameter sets. This is because the LHS technique 
ensures that each input parameter is sampled over its 
entire range with the appropriate probability distribu- 
tion in fewer runs than are necessary for random sam- 
pling. While LHS has not been proved to be better 
than RS in general, we chose this method on the ba- 
sis of its demonstrated superiority in the McKay et al. 
[1979] study. We show below that the error in our appli- 
cation is slightly smaller than would be expected from 
a RS approach. 

To use LHS with M input parameter values and N 
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Table 3. Heterogeneous Reaction Parameters Varied in Monte Carlo Runs 

Parameter Description Uncertainty 

HI C1ONO2 + HC1 -+ HNOa + C12 (sulfate) 5 •' 
H2 C1ONO2 + H20 -+ HNOa + HOC1 (sulfate) 3 •' 
H3 N205 q- I-t20 -+ 2HNOa (sulfate) 2 
H4 HOC1 + HC1 -+ 1-120 q- CI2 (sulfate) 3 b 
H5 BrONO2 + H20 -+ HNOa + HOBr (sulfate) 2 c 
H6 HOBr + HC1 -+ I-t20 q- BrC1 (sulfate) 3 c 
H7 CIONO2 + HC1 -+ HNOa + CI2 (NAT) 3 
H8 C1ONO2 + H20 -+ HNOa + HOC1 (NAT) 10 a 
H9 N205 + H20 -+ 2HNOa (NAT) 3 

H10 N205 + HC1 -+ HNOa + C1ONO (NAT) 2 
HI1 HOC1 + HC1 -+ H20 q- C12 (NAT) 3 
H12 C1ONO2 + HC1 -+ HNOa + C12 (ice) 2 b 
HIS C1ONO2 q- H20 -+ HNOs + HOC1 (ice) 10 
H14 N20• q- H20 -+ 2HNOs (ice) 3 
H15 HOC1 + HC1 -+ H20 q- CI2 (ice) 3 
H16 HOBr + HC1 -+ H20 q- BrC1 (ice) 3 
HI7 Type 1 (NAT) mode radius 2 d 
H18 Type 2 (ice) mode radius 2 d 
H19 supersaturation ratio (NAT) 2 e 
H20 supersaturation ratio (ice) 1.2 e 

aChosen on the basis of DeMote et al. 's [1994, Table 59] notes. 
bD. R. Hanson (personal communication, 1996). 
½Based on Hanson and Ravishankara [1995]. 
dpersonal judgement of uncertainty. 
eCorresponds to I K uncertainty in supersaturation temperature. 

runs, the range of each of the M input parameters is 
first broken into N equal-probability segments. Then 
one input parameter value is chosen for each segment. 
The result is a set of M lists of values, (one for each pa- 
rameter) each N values long. An input parameter set 
for a Monte Carlo run is obtained by picking one value 
at random from each of the lists and then striking that 
value from the list so it will not be used again. Picking 
the values at random minimizes correlations between 

different input parameters. The process is repeated un- 
til N input parameter sets are generated. 

:,].3. Run Specifics 

In our LHS methodology we used a value of N = 50. 
That is, for each of the 158 parameters we considered, 
we divided the uncertainty range into 50 equal probabil- 
ity segments. We then constructed 50 input parameter 
sets by picking a value at random from each of the 50- 
value lists and then striking the value so it could not be 
picked again. We repeated this process nine times to 
obtain a total of 450 input parameter sets. This "repli- 
cated LHS" procedure [Iman and Conover, 1980] was 
adopted to allow us to evaluate the error in our predic- 
tions of model uncertainty, as explained below. Of the 
,450 runs we attempted, 419 were completed success- 
fully and 31 runs failed. The largest number of failed 
model runs for any 50 run replication was 6. We did 
not attempt to rerun the failures with a modified code 
because we felt a failure rate of < 10% would have a 
minimal impact on our results and we wanted to ensure 

that the model formulation was the stone in all of the 
runs. Each run was initialized in 1970 using the same 
initial conditions and run for 26 years, through the end 
of 1995. Each run used a different input parameter set. 
Since the model adjusts to changes in input parameters 
within about 5 years, the study period after 1979 should 
not be affected by the model initialization. During the 
course of each 26-year run, source gas boundary condi- 
tions at the ground were time-stepped as described by 
Jackman et al. [1996]. Increases in chlorofiuorocarbon 
emissions result in an increased stratospheric chlorine 
loading, contributing to the changes in O3 concentra- 
tions which are the subject of this paper. 

From 1970 to 1979, the sulfate aerosol distribution 
was set to 1979 values for the appropriate month. From 
1979 to 1995 the aerosol distribution was specified from 
the sulfate aerosol time series mentioned above. Also 
as mentioned above, a parameterization of the l 1-year 
variation in the solar ultraviolet flux was also included 
in each run. 

It is important to determine whether or not the num- 
ber of Monte Carlo calculations made for this study is 
adequate. Imagine a Monte Carlo study with a very 
large number of runs. Each run gives a prediction for 
the model output of interest, which for example might 
be the percent change in globally and annually averaged 
total O3 between 1979 and 1992. As the number of runs 
becomes infinitely large, a limiting distribution for the 
model output with a mean value •u and a standard de- 
viation a will be formed. Each model run produces a 
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single sample of this limiting distribution. The cr char- 
acterizes the uncertainty in the model output and is the 
quantity we attempt to estimate from a finite number 
of Monte Carlo runs. 

In the case where the model input variables are cho- 
sen at random, each Monte Carlo run will be a random 
sample of the model output distribution. If N Monte 
Carlo runs are made, a mean/•N and standard deviation 
aN can be calculated to estimate/• and or. The standard 
error of these estimates is simply cr/N x/2. This suggests 
that with N - 419, the/•N and aN from a random sam- 
pling Monte Carlo calculation will be within about 5% 
of •u and or. If LHS provides no benefit over RS, then 
this is typical of the error in our uncertainty estimates. 

The replicated LHS technique allows us to quantify 
the error in our predictions of cr because we have nine 
independent 50-run estimates of or. The best estimate 
of cr will be the average of the nine aN, and the error 
will be given by the standard error of •-•. Consider for 
example the change in globally and annually averaged 
total O3 between 1979 and 1992. The nominal value for 
this model output is -5.75%. The average aN =2.66%, 
with a standard error of 0.11%. Therefore the error 

in our estimate of cr is about 4.1%, which is consistent 
with the error we would expect from a RS Monte Carlo 
approach and is sufficient for the purposes of this paper. 

4. Results 

4.1. Total Ozone Trends 

Figure 1 compares the time series of the percent 
change in model annually averaged global total O3 since 
1979 with observations made by the TOMS instrument. 
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Figure 1. Percent change in the GSFC two- 
dimensional model annually and globally (65øS to 65øN) 
averaged total O3 since 1979 compared with observa- 
tions made by the TOMS instrument. The solid line is 
the model simulation using nominal rates, the dashed 
lines indicate the q-let variation calculated from the 419 
model runs analyzed in this study, and the dotted lines 
indicate the high and low extreme cases. The crosses 
represent annually and globally averaged TOMS data. 

The model result using nominal input values is the solid 
line, while the TOMS observations are shown by the 
crosses. (Note that the nominal case corresponds to 
the median rather than the mean of the Monte Carlo 
runs.) The dashed lines above and below the model 
nominal case indicate plus and minus I standard devi- 
ation from the nominal values. The dotted lines on the 
plot show the high and low extrema of the Monte Carlo 
cases. Figure 1 shows that the agreement between the 
TOMS values and the nominal case is very good. The 
agreement is significantly better than would occur if 
solar cycle and sulfate aerosol variability were not in- 
cluded in the calculation, as shown by Jackman et al. 
[1996]. There is some disagreement between the model 
and observations due to year-to-year variability in the 
observations which does not occur in the model. Neither 
interannual dynamical variability nor the quasi-biennial 
oscillation are included in the model formulation, which 
could account for some of the discrepancy. 

The uncertainty in the model time series resulting 
from uncertain input parameters is substantial. For in- 
stance, the percent change in global total O3 between 
1979 and 1993 (the year of the maximum percent change 
i¾om 1979) is about 6.5% q- 2.5% (let), indicating that 
the nominal model trend and the actual model trend 
(the trend the model would calculate if it were supplied 
a correct set of input parameter values) differ in relative 
terms by at most 40% with a likelihood of about 2 in 3. 
Figure 1 also shows that the typical model/observation 
discrepancy is significantly smaller than the let error 
in the model time series. The relatively large model 
uncertainty indicates that these differences could eas- 
ily be due to errors in the input reaction rates, and 
it can thus be argued that the differences between the 
TOMS data and the nominal model time series seen in 
Figure 1 are insignificant. This is essentially equiva- 
lent to the statement that the good agreement between 
the nominal model time series and the TOMS time se- 

ries could be fortuitous: it might easily be that the 
model/measurement discrepancy would increase if the 
model were given the correct set of input parameter 
values as input. 

As mentioned above, the TOMS time series is influ- 
enced by interannual dynamical variations which do not 
occur in the model. This complicates the comparison 
of the observed and modeled changes in total 03 result- 
ing from the buildup of chlorine in the stratosphere. In 
order to compare more directly the observed and calcu- 
lated trend in O3 resulting from chlorine increases, we 
have fit the total O3 time series from each of the Monte 
Carlo runs to a function similar to that used in the stan- 

dard trend analysis of TOMS total O3 data using the 
same regression technique [McPeters et al., 1996]. We 
can then directly compare the model trend in O3 with 
the TOMS trend. Figure 2 compares the globally and 
annually averaged total O3 trend from the Monte Carlo 
runs with the trends calculated from the TOMS data. 

The histogram in the figure shows the distribution of 
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Figure 2. Globally and annually averaged total Oa 
trends from the Monte Carlo runs compared with trends 
derived from the TOMS data. Shown is a histogram 
of the Monte Carlo run results grouped into 0.4 % 
decade -• bins. The histogram gives the probability 
that a Monte Carlo run resulted in a particular trend in 
globally and annually averaged total 03. The solid ver- 
tical line is the trend for the nominal case, the dashed 
lines show the +ley variation in the Monte Carlo runs, 
and the dashed-dotted line indicates the TOMS result. 

the globally averaged model O3 trend produced by the 
419 Monte Carlo runs. The histogram shows the proba- 
bility that a Monte Carlo run produces a trend of a cer- 
tain magnitude, resolved to a bin size of 0.4 percent per 
decade. The solid vertical line in the figure marks the 
nominal case trend of-3.02 % decade -•, and the dashed 
vertical lines show the :t:1• variation of 1.38 % decade -• 
around the nominal result. The dashed-dot vertical 

line shows the TOMS result of-2.26 % decade -•. The 
plot shows that the nominal model case is about 34% 
larger than the TOMS trend and that the two lie within 
the 1• uncertainty in the model result. This demon- 
strates more convincingly than the time series compar- 
ison above that the difference between the model and 

the TOMS trend is not significant. Errors in the nomi- 
nal input parameter set could relatively easily be hiding 
better (or worse) model/measurement discrepancies. 

Figure 3 shows the time series of annually averaged 
total O3 at 45 ø N and 45 ø S, again in terms of the 
percent change since 1979. The same plotting symbols 
are used here as in Figure 1. We have also included a 
2-year running average of the TOMS data on the plot 
to smooth out the interannual and biannual variability 
and focus on the decadal time scales. This comparison 
tests the model more stringently than the globally aver- 
aged total O3 comparison shown in Figure I because of 
the larger influence of transport processes on column O3 
at higher latitudes. Again we see very good agreement 
between the model nominal case and the TOMS obser- 

vations. The discrepancies due to 1- and 2- year interan- 
nual variations are larger in these plots than in the glob- 
ally averaged case, but overall the model/measurement 

agreement is good enough to be considered fortuitous 
given the uncertainty in the model time series from the 
Monte Carlo runs. 

To focus on the annually averaged O3 trend as a func- 
tion of latitude we compare in Figure 4 the TOMS and 
model annually averaged total O3 trends as a function of 
latitude obtained using the regression model described 
above. As before, the solid line represents the nomi- 
nal case, the dashed lines show the :t:1• variation from 
the nominal case, and the crosses represent the TOMS 
data. Considering the model uncertainty in the tropics, 
there is a statistically significant difference (at the 1• 
level) between the nominal trend of about 2 % decade -• 
and the TOMS values. However, the TOMS-calculated 
trends are also uncertain, and it is possible that errors 
in both the model calculations and the TOMS data pro- 
duce the discrepancy between the model nominal result 
and the TOMS trend. 

Figure 4 shows that the model nominal annually aver- 
aged O3 trend and the TOMS-derived trend agree very 
well in the northern hemisphere midlatitudes. How- 
ever, the figure also shows that the uncertainty in 
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Figure 3. Percent change since 1979 of annually aver- 
aged total 03 for the GSFC 2-D model at 45 ø N and 45 ø 
S compared to TOMS observations. The solid, dashed, 
and dotted lines, as well as the crosses, are as in Fig- 
ure 2. The long dashed line shows a 2-year running 
average of the TOMS data. 
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Figure 4. Latitude dependence of the annually aver- 
aged trend in total 03, (% decade-•). The solid line 
shows the modal nominal case, the dashed lines indi- 
cate the +lcr uncertainty in the result calculated from 
the Monte Carlo runs, and the crosses indicate the an- 
nually averaged trend in total O3 calculated from the 
TO MS data. 

the model result at these latitudes is large. For in- 
stance, at 55øN the model annually averaged 03 trend 
is 3.8 + 1.8 % decade -•, an uncertainty of about 47%. 
Because of this large uncertainty, the good agreement 
between the model and the observations is meaningless. 
It could easily be that errors in one the nominal input 
parameters are fortuitously countering a model formu- 
lation error which would be apparent if the correct input 
parameter values were used. 

An obvious difference between the model and TOMS 

annually averaged total 03 trends shown in Figure 4 
is the meridional gradient of the trend, which is sig- 
nificantly larger in the TOMS observations than in 
the model nominal case. The difference between the 
model and the observations can be examined more 

closely by calculating the meridional gradients in each 
of the Monte Carlo runs and comparing the variability 
in the gradient with the difference between the model 
and TOMS gradients. Figure 5 shows this compari- 
son. The model meridional gradient of the annually 
averaged total 03 trend (percent per decade per de- 
gree latitude) is plotted with its -FI• variability and is 
compared to the gradients in the TOMS annually av- 
eraged trends. The largest disagreements between the 
model nominal case and the TOMS results occur in the 

northern hemisphere at 35 ø and in the southern hemi- 
sphere at -55 ø . Both the northern and southern hemi- 
sphere model/measurement discrepancies are about 4 to 
5 times the 1• uncertainty in the model gradient. These 
discrepancies are so large that it is unlikely that errors 
in the nominal input parameter set could be responsi- 
ble for the large model/observation discrepancy. The 
weak model meridional gradients seen in the model are 
therefore likely to be due instead to errors in the model 
transport formulation. 

Two-dimensional models have well-known problems 
in correctly capturing the characteristics of meridional 
transport in the atmosphere. These models often over- 
estimate the amount of mixing between the tropics and 
midlatitudes, and between the midlatitudes and the po- 
lar vortex during winter [Bacmeister et aL, 1995; Fahey 
et al., 1996]. It is thus not surprising that such a model 
would poorly represent the meridional gradients in the 
03 trends. The model/measurement discrepancy seen 
in Figure 5 illustrates how a well-known model trans- 
port problem is revealed in this uncertainty analysis. 
Similar sorts of discrepancies may point to other less 
understood model formulation problems. 

4.2. Seasonal Total Ozone Trends 

Total Os trends vary significantly over the course of 
the year and it is important to understand the factors 
contributing to this variation. Figure 6a shows the 
seasonal and meridional variation of Earth's total O3 
as calculated from version 7 TOMS data from instru- 

ments on the Nimbus 7 and Meteor 3 satellites between 

November 1978 and October 1994. Conclusions con- 

cerning a model's ability to capture the trends in total 
O3 are typically drawn from such a plot. Figure 6b 
shows the corresponding result from the the GSFC 2-D 
model for the nominal input parameter set. Note that 
this differs slightly from that presented by Jackman et 
al. [1996] due to a somewhat different transport formu- 
lation in the two simulations. 

Figure 6c shows the lcr uncertainty of the model cal- 
culation. This figure can be used to determine the sig- 
nificance of the discrepancies between the TOMS and 
model total O3 trends shown in Figures 6a and 6b, 
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Figure 5. Meridional gradient in annually averaged 
trend in total Os calculated by the GSFC 2-D model, 
its uncertainty from the Monte Carlo runs, and com- 
parison to TOMS observations. The solid line shows 
the nominal case gradient in the annually averaged to- 
tal Os trend, in % decade -z (degree latitude) -z. The 
dashed lines show the -FI½ variation in the gradient cal- 
culated using the Monte Carlo runs. The crosses show 
the trend gradients calculated using Nimbus 7 and Me- 
teor 3 TOMS observations. 



CONSIDINE ET AL' A MONTE CARLO UNCERTAINTY ANALYSIS 

90 

60 

50 

-30 

-60 

-9O 

0 

V7 TOMS TREND (%/DECADE) 

Q 

I I I I I 

60 120 180 240 $00 
DAY OF YEAR 

560 

la.I 

90 

60 

50 

-50 

-60 

-9O 

0 

! 

,....-- 

GSFC 2D MODEL NOUlNAL TREND (%/DECADE) 

60 120 

I I 

180 240 500 560 
DAY OF YEAR 

90 

60 

50 

-50 

1• TREND UNCERTAINTY (%/'DECADE) 

' ' ß - 

• c 

1.0 

-" I.$ •• 

-60 •2'ø - • • 2.0 - 
-- 2.5 • • ••"-- - 2.0 • 

-90 ,' , , I , 

0 60 120 180 240 $00 560 
DAY OF YEAR 

Figure 6. Meridional and seasonal dependence of the TOMS total 03 trends, and model- 
calculated total 03 trends and trend uncertainty. (a) TOMS trends calculated from version 7 
Nimbus 7 and Meteor 3 TOMS data in % decade -x. (b) The model trend using nominal values 
of the input parameters and the same statistical model as in the TOMS calculations, minus a 
QBO term. (c) Monte Carlo estimate of the uncertainty in the model-calculated total 03 trend 
(% decade -x). 
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respectively. Figure 6c shows that the smallest un- 
certainties occur in the tropics, while the largest oc- 
cur in the late spring/early summer in both the north- 
ern and southern hemispheres. The maximum uncer- 
tainty occurs in the southern hemisphere high latitudes 
where the model calculates the largest trends in total 

03. Note, however, that as a fraction of the model- 
calculated trend, the southern hemisphere high-latitude 
uncertainty is actually a minimum, with the trend un- 
certainty as low as 25% of the trend itself. The maxi- 
mum relative uncertainty of about ?0% occurs at south- 
ern high latitudes in midwinter. Throughout most of 
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Figure 7. Probability distribution of total O3 trend 
calculations for March at 45øN from the Monte Carlo 
runs compared to the observed trend. Shown is a his- 
togram of 419 model calculations divided into 0.4 % 
decade-1 bins and normalized to be expressed as a prob- 
ability. The model result using nominal input param- 
eter values is the solid vertical line. The dashed lines 
show the iler values. The dot-dash line shows the to- 

tal 03 trend calculated with TOMS data for March at 
45øN. 

the year and over most of the globe, however, the rela- 
tive uncertainty in the model is trend is fairly uniform, 
varying between 35% and 50%. 

It is often noted that models significantly underesti- 
mate total 03 trends in the northern hemisphere mid- 
latitudes in March [e.g., Solomon et al., 1996]. The 
Monte Carlo calculation allows us to determine whether 

there really is a significant difference between the model 
calculation and the observations, or whether the dis- 
crepancy might easily be due to an error in the nomi- 
nal model input parameters. Figure 7 is a plot of the 
probability distribution of the Monte Carlo runs for 
the middle of March, at 45øN. As before, the Monte 
Carlo runs are distributed into bins with a width of 0.4 
% decade -1. The solid vertical line indicates the model 
nominal trend of-3.59 % decade -1. The dashed verti- 
cal lines indicate the +let variation around the nominal 

case of 1.63 % decade -1. The dash-dot vertical line 
indicates the TOMS trend value of-6.42 % decade -1. 
The plot shows that the difference between the model 
nominal case and the TOMS trend is significant at the 
let level but not at 2er. It is thus possible, but not very 
likely, that the discrepancy between the model nom- 
inal case and the TOMS data results from an error 

in the nominal case input parameters. One might re- 
fer to the model/measurement discrepancy in this case 
as being marginally significant. It is important to re- 
member, however, that the uncertainty calculated from 
these Monte Carlo calculations does not include vari- 

ations in the model transport formulation as a source 
of model uncertainty and is a lower bound to the total 
uncertainty in the model calculation. It is possible that 
the combination of dynamical and input uncertainties 

would be large enough to render the differences between 
the model and the observed total 03 trends insignificant 
at this latitude and time of year. 

One fairly obvious difference between the TOMS 
trends shown in Figure 6a and the model trends in 6b is 
a much larger seasonal variation in the observed trend 
than the model calculated trend. We note that a weak 

seasonal trend variability is a common model problem 
[World Meteorological Organization, 1995]. To examine 
this more closely we plot in Figure 8 the seasonal am- 
plitude of the total 03 trend as a function of latitude, 
where the amplitude is calculated as the difference be- 
tween the maximum trend and the minimum trend at a 

particular latitude. The trend amplitude for the model 
nominal case is the solid line, the dashed lines show the 
i1• variation around the nominal case, and the crosses 
show the TOMS trend amplitudes. Figure 8 shows that 
the model underestimates the trend amplitude at most 
latitudes, but is particularly far from the mark in the 
northern hemisphere midlatitudes. Figure 8 also shows 
that the trend amplitude does not vary much between 
the Monte Carlo runs, so the difference between the 
model nominal case and the TOMS seasonal trend am- 

plitude is up to 8.75 times er at 45 ø. In contrast to the 
discrepancy between the measured and modeled global 
total 03 trend (Figure 2) or the March midlatitude total 
03 trend (Figure 7), this is a clear case where it is ex- 
tremely unlikely that the difference between the model 
and the TOMS result is caused by an input parameter 
error. Here it is very clear that the model formulation 
is incorrect, and resources can confidently be directed 
toward a real as opposed to a possible model problem. 

4.3. Sources of Uncertainty 

The Monte Carlo methodology provides a good esti- 
mate of the uncertainty of model output given a good 
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Figure 8. Seasonal total 03 trend amplitude as a func- 
tion of latitude. The amplitude is defined as the differ- 
ence between the maximum and the minimum trend in 

total 03 at a particular latitude. The nominal case, 
+let variation, and TOMS values are indicated by the 
solid line, dashed lines, and crosses, respectively. 
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characterization of the uncertainty in the model in- 
put parameters. However, the technique does not di- 
rectly calculate which of the input parameters con- 
tribute strongly to the model output uncertainty and 
which do not. In this section we attempt to determine 
indirectly which parameters have the largest influence 
on the model output uncertainty. 

Two factors determine the importance of the uncer- 
tainty in an input parameter to the model output un- 
certainty: (1) the sensitivity of the model output to 
changes in that parameter, and (2) the magnitude of 
the input parameter uncertainty. If the model output 
of interest is insensitive to the input parameter, it does 
not matter how uncertain the value of that parameter 
is. On the other hand, a very precisely and accurately 
measured input parameter may not contribute greatly 
to the model output uncertainty even if there is a large 
sensitivity. 

A typical strategy for determining the contribution of 
the model input parameters to the model output uncer- 
tainty in a Monte Carlo study is to fit the model output 
to an analytic function of the input parameters using 
a regression technique [e.g., Gao et al., 1996; Stewart 
and Thompson, 1996]. The standard fitting function 
assumes a linear relationship between each input pa- 
rameter and the output of interest. Thus 

y = ao + a•p• + a2p2 + ... + amPm, (8) 

where y is the model output of interest, p•,...,pm are 
the fitting parameters, m•d a0,... ,am are the coeffi- 
cients obtained from the regression analysis characteriz- 
ing the linear relationship between the input parameter 
and the model output. There is no guarantee that this 
method will work everywhere in the model domain and 
at all times. However, as shown below, the fit is often 
reasonable. 

If the fit is good, then standard error propagation 
suggests that the contribution of the •ri•nce of each 
input parameter to the v•rim•ce in the output can be 
•pproxim•ted by 

+ + 

Given equation (8), Oy/Oki = ai. To obtain a nor- 
malized result we calculate the fractionM contribution 

of the ith parameter to the variance using 

2 2 

-- ai•i (10) 2 2 fi •iai•i 
We first examine the sources of uncertainty in the 

northern hemisphere midlatitude spring column Os 
trends. To do this, we have fit the percent change in 
column Os betw•n 1980 and 1990 at 45øN in March 
using a linear function of the input parameters as in 
equation (8). The change in column Os is most highly 
correlated with the reactions evaluated at the 38.5-mbar 

level. T•s is the pressure level with the largest O• 
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Figure 9. Comparison of model calculated 1980-1990 
percent change in column Os at 45øN in March with 
predicted changes from a multiple linear regression fit 
to the model values. The crosses show the values for 
each of the 419 Monte Carlo runs. 

concentration changes and hence the largest contribu- 
tor to the change in column 03. The multiple linear 
correlation coefficient for the fit is 0.91, indicating that 
the fitting equation can explain 91% of the variance in 
the change in column 03 calculated in the Monte Carlo 
runs. The quality of the fit is shown in Figure 9, which 
compares the model calculated percent change in col- 
umn 03 on the x axis with the prediction of the linear 
relation expressed by (8) on the y axis. The points are 
reasonably compactly arranged along the 1-to-1 line as 
is required of a good fit. There is a tendency for the 
linear fit to underestimate somewhat the cases with the 

largest reductions in total 03. 
The regression results in two measures of a param- 

eter's importance: First is the linear correlation coef- 
ficient specifying the degree to which each individual 
parameter correlates with the change in total 03. Sec- 
ond is the fractional contribution to the total variance 

of the change in total 03 calculated from the multiple 
linear regression fit, as in equation (10). The parame- 
ters which are most highly correlated with the change in 
total 03 also tend to be the largest contributors to the 
variance. Only a few of the fitted parameters have ei- 
ther high correlation coefficients or large fractional con- 
tributions to the total variance. There is also a signifi- 
cant correlation between the two: if a parameter has a 
large correlation coefficient, it tends also to be a strong 
contributor to the variance. This implies that only a few 
of the parameters control the response of model total 
03 distributions to changes in chlorine loading. 

Table 4 shows the 11 parameters which have an abso- 
lute linear correlation coefficient larger than 0.1 and a 
fractional contribution to the variance larger than 2%. 
For a 419-run data set, the probability that a correlation 
coefficient exceeds 0.1, 0.15, and 0.2 simply by chance 
is about 4%, 0.2%, and 0.004%, respectively. Thus it is 
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Table 4. Regression Analysis of March 1980-1990 Percent Change in Column Oa at 45 ø N 

Number Parameter Correlation Contribution to Variance (%) 

1 N•.O + O( • D) -• NO + NO 0.350 15.19 
2 HNOa + OH -• NOs + H•.O 0.295 12.06 
3 HC1 + OH -• C1 + H•.O -0.289 6.84 
4 Oa + OH -• HO•. + O•. 0.273 3.50 
5 N205 + ht,, • NO2 + NOa 0.272 12.02 
6 N205 q-H20 --• 2HNOa (sulfate) -0.259 3.76 
7 N205 + M -• NO2 + NOs + M 0.198 2.03 
8 NO2 + Os -• NOs + O2 -0.194 4.50 
9 C1 + Os -• C10 + O2 -0.187 3.15 

10 N20 + ht/• N2 + O -0.161 2.05 
11 Os + ht,, --• 02 + O( x D) 0.108 2.79 

Analysis is based on 419 Monte Carlo runs fit to 158 input parameters at 38.5 mbar level. 

likely that a physical relationship exists between these 
parameters and the model column Oa change. The sec- 
ond column of Table 4 lists the correlation coefficents for 

the reactions, and the third column lists the fractional 
contribution of each of the tabulated parameters to the 
total variance in column Os in the linear regression fit. 

Table 4 shows that •68% of the variance in the col- 

umn Os change from multiple linear regression fit is pro- 
duced by these 11 reactions. The table also illustrates 
the importance of the odd nitrogen family in control- 
ling the response of model total Os to chlorine pertur- 
bations. Parameter I is the primary producer of NOy 
in the atmosphere; the more NOy, the more increases in 

available to convert HC1 to reactive chlorine and result- 

ing in a positive correlation. Parameter 11 produces 
numerous changes which would be expected to reduce 
the Os trend such as increasing the production of HOx 
and N Oy and changing the partitioning of ely in fa- 
vor of reservior forms. It is not obvious which of these 

might dominate the others. 
The parameters shown in Table 4 are those which are 

most strongly correlated with the changes in column 
Oa produced by increases in stratospheric Cly concen- 
trations. It is interesting but not surprising to note that 
a different set of parameters are highly correlated with 
background Os concentrations. A set of nine of these 

Cly will be stored in the reservoir forms via reactions of parameters for 45øN, in March at 38.5 mbar, are shown 
C10 with the NOy radicals NO and NO2. Parameter 10 
would tend to reduce the amount of background NOy 
and hence reduce the fraction of ely in reservoir forms. 
Parameters 2, 5, and 7 convert reservior forms of NOy 
to reactive forms which can tie up ely in its reservoir 
forms. Parameter 8 is an essential step in the formation 
of HNO•, removing forms of NOy which can react with 
Cly species. 

Parameters 3 and 9 are reactions which directly con- 
trol the partitioning of Cly. They both force the par- 
titioning of Cly toward more active forms, resulting in 
negative correlation coefficients. Parameter 4 also has 
an understandable effect, reducing the amount of OH 

in Table 5. The listed parameters have linear correla- 
tion coefficients greater than 0.1 and contribute more 
than 1% to the variance in the multiple linear regres- 
sion fit. The multiple linear correlation coefficient for 
this fit is 0.96, which is better than for the fit to changes 
in column Os amounts discussed above. By far the most 
highly correlated parameter is O2 photolysis, which is 
the primary Ox production mechanism. This parame- 
ter is itself responsible for almost 60% of the variance 
in background Os concentrations, and together these 
nine input parameters account for •85% of the total 
variance in the Oa levels calculated from the multiple 
linear regression fit. 

Table 5. Regression Analysis of March Os at 45 ø N and 38.5 mbar 

Number Parameter Correlation Contribution to Variance (%) 

02 + ht,, -• O + O 
Oq.O2 + M --• Os + M 
NO + Os • NO2+ 02 
Os + ht,, • 02+ O 
OH q- O3 --• HO2 q- 02 
NO2 q- O • NO + 02 
HO2 q- O3 • OH + 202 
Os + ht,, • 02 + O( • D) 
HC1 + OH • C1 + H20 

0.723 59.86 
0.307 10.32 

-0.156 1.39 
-0.141 3.82 
-0.120 1.46 
-0.119 2.18 
-0.115 3.67 

-0.106 1.26 
-0.105 1.16 
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Table 6. Regression Analysis of A Column 03 Between 1980 and 1990 in October at 75 ø S 

Number Parameter Correlation Contribution to Variance (%) 

1 02 + hv --• 0 + 0 0.314 10.47 
2 Type 2 aerosol radius 0.253 6.07 
3 BrO + C10 -• Br + C1OO -0.177 3.61 
4 N20 + O(XD) -• NO+ NO 0.173 4.07 
5 HNOs + OH -+ NOs + H20 0.171 6.87 
6 N205 + H20 -+ 2HNO3 (sulfate) -0.156 2.21 
7 BrO + C10 -+ Br + OC10 -0.146 5.78 
8 HC1 + OH -+ C1 + H•.O -0.141 4.57 
9 O + O•. + M -+ Os + M 0.126 3.41 

10 C1ONO•. + H•.O -• HNOs + HOC1 -0.111 4.00 
11 CH4 + C1 -+ CH3 + HC1 0.100 2.98 

Input parameters are for October at 75øS and the 39 mbar level. 

The fact that different input parameters control the 
background O3 concentrations and its response to ely 
perturbations suggests that it is not possible to conclude 
from a model's good reproduction of observed O3 levels 
that its response to a perturbation will be reliable. This 
should be established instead from a model's ability to 
reproduce observed changes in 03. 

Figure 6a shows that the largest model trends in col- 
umn O3 occur in the southern hemisphere high latitude 
spring. The input parameters which apparently control 
the sensitivity of the model southern hemisphere high- 
latitude region in spring are shown in Table 6. The mul- 
tiple linear correlation coefficient here is about 0.81, so 
the regression model is less able to account for the vari- 
ance in the model-calculated change in column O3 at 
this location than at midlatitudes. Also, the fraction of 
the total variance contributed by the 11 listed param- 
eters is ,,,54%, lower than for the midlatitude column 
O3 change discussed above. 

Several of the important midlatitude northern hemi- 
sphere input parameters shown in Table 4 reappear in 
this table. However, the increased role of heterogeneous 
reactions and halogen chemistry is reflected in the ap- 
pearance in the table of the Type 2 PSC radius, the 
C10 + BrO reactions, and the heterogeneous reaction 
C1ONO2+H20 -• HOCl+HNO3 on ice. The rate of this 
reaction has a factor of 10 uncertainty associated with 
it according to DeMote et al. [1994], which might ex- 
plain its appearance on this list over other ice-catalyzed 
reactions which have larger sticking coefficients. 

5. Summary and Conclusions 
We have presented a Monte Carlo estimate of the 

uncertainty in total O3 trend predictions made using 
the GSFC 2-D model. This uncertainty results from 
uncertainties in input gas phase and heterogeneous re- 
action rates, and photolysis coefficients. We have used 
Latin hypercube sampling to reduce the number of runs 
necessary to obtain a good estimate of the uncertainty. 

Given this technique, the 419 runs completed for this 
study should result in an error of no more than a few 
percent. 

The uncertainty in the model prediction of the glob- 
ally and annually averaged trend in total O3 is large 
enough such that the difference between the model pre- 
diction and the trend calculated from Nimbus 7 and Me- 

teor 3 TOMS data is insignificant. We find a marginally 
significant difference between the modeled and observed 
equatorial annually averaged total O3 trend which is 
insignificant when errors in the TOMS calculation are 
considered in addition to the model uncertainty. At mid 
to higher latitudes the difference between the measured 
and observed annually averaged trend in column O3 is 
again insignificant. The difference between the mod- 
eled and observed total O3 trend in March at 45øN is 
marginally significant when considering the uncertainty 
in the model calculation only. Assuming the input pa- 
rameter uncertainty estimates to be true, it is possible 
that the differences between the model results and the 

observations in these cases arise from errors in the in- 

put parameters and not from an incorrect model for- 
mulation. Thus it seems that efforts to increase the 

agreement between the model and the observations in 
these cases by changing the model formulation might be 
wasted without more precise and accurate specification 
of the model input parameters. 

Good agreement between a model and the observa- 
tions listed above might simply be due to fortuitously 
compensating errors in some input parameter and the 
model formulation, so grading the performance of a 
model using such observations should also be avoided 
until the differences between the model results and ob- 

servations can be shown to be significant. 
Clearly significant differences between the modeled 

and observed trends are seen in the meridional gradi- 
ents of the annually averaged trends at midlatitudes 
and the seasonal trend amplitude at all latitudes. It is 
quite unlikely that these differences could be caused by 
errors in the input parameters so it is very likely that 
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they are the result of an incorrect model formulation. 
Further model development efforts can be directed to- 
ward resolving these discrepancies. 

The contribution of a particular input parameter un- 
certainty to the total model output uncertainty depends 
on both the magnitude of the input parameter uncer- 
tainty and the sensitivity of the model to that param- 
eter. Direct information concerning the contribution of 
each input parameter is not available in a Monte Carlo 
analysis, but an approximation can be made by fitting 
the model output to a linear function of the input pa- 
rameters and then determining the contribution of the 
variance in each input parameter to the total variance 
of the regression model fit. This technique reveals that 
only a few of the input parameters contribute much 
to the variance at any particular location. Reducing 
the uncertainty of those parameters would produce the 
largest decreases in model uncertainty. The regression 
analysis also shows that the parameters controlling the 
variance in background O3 concentrations are not the 
same as the ones producing variance in the model re- 
sponse to Cly increases. 

We stress that the validity of these output uncer- 
tainty calculations depends on a correct evaluation of 
the input parameter uncertainties. If these are gener- 
ally overestimated, then the uncertainty in the model 
calculations will also be overestimated. There is some 

observational evidence to suggest that interpreting the 
DeMote et al. [1994] values as la uncertainties overes- 
timates the actual uncertainties in the tabulated rates. 

Cohen et al. [1994] made this assumption when com- 
paring observed H Ox partitioning from aircraft obser- 
vations to the predictions of a simple analytical model, 
and found better model/measurement agreement than 
was expected from the calculated uncertainties. In such 
a situation model/measurement discrepancies that indi- 
cate model problems might incorrectly be judged to be 
the insignificant consequence of input parameter errors. 
A more specific recommendation on how to interpret 
the DeMote et al. [1994] uncertainty estimates would 
be helpful in future uncertainty studies. 
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